# 99. Cyclodimerization of 1-(Dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene Induced by Nonacarbonyldiiron. Crystal Structure of (1RS,2SR,3RS,4RS,4aRS,9aSR)-Tricarbonyl[C,2,3,C-η-(1,4-epoxy-1,5-bis(dimethoxymethyl)-2,3-dimethylidene-1,2,3,4,4a,9,9a,10-octahydroanthracene)]iron<sup>1</sup>)

#### by Edia Bonfantini and Pierre Vogel\*

Institut de chimie organique de l'Université de Lausanne, 2, rue de la Barre, CH-1005 Lausanne

## and Alan A. Pinkerton

Department of Chemistry of the University of Toledo, 2801 West Bancroft St., Toledo, Ohio 43606, USA

## (18.1V.89)

The transition-metal-carbonyl-induced cyclodimerization of 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene is strongly affected by substitution at C(1). While 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene-1-methanol (7) refused to undergo [4 + 2]-cyclodimerization in the presence of  $[Fe_2(CO)_9]$  in MeOH, 1-(dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene (8) led to the formation of a 1.7:1 mixture of 'trans' (19, 21, 22) vs. 'cis' (20, 23, 24) products of cyclodimerization together with tricarbonyl[C,5,6,C- $\eta$ -(1-(dimethoxymethyl)-5,6-dimethylidenecyclohexa-1,3-diene)]iron (25) and tricarbonyl[C,3,4,C- $\eta$ -(methyl 5-(dimethoxymethyl)-3,4-dimethylidenecyclohexa-1,5-diene-1-carboxylate)]iron (26). The structures of products 19 (and of its exo (21) and endo (22) [Fe(CO)<sub>3</sub>(1,3-diene)] complexes) and 20 (and of its exo (23) and endo (24) [Fe(CO)<sub>3</sub>(1,3-diene)] complexes) and 20 (and of its exo (23) and endo (24) [Fe(CO)<sub>3</sub>(1,3-diene)] complexes) are confirmed by X-ray diffraction studies of crystalline (1RS,2SR,3RS,4RS,9aSR)-tricarbonyl[C,2,3,C- $\eta$ -(1,4-epoxy-1,5-bis(dimethoxymethyl)-2,3-dimethylidene-1,2,3,4,4a,9,9a,10-octahydroanthracene)]iron (21). In the latter, the Fe(CO)<sub>3</sub>(1,3-diene) moiety deviates significantly from the usual local  $C_s$  symmetry. Complex 21 corresponds to a 'frozen equilibrium' of rotamers with  $\sigma$ -alkyl, $\eta$ <sup>3</sup>-allyl bonding mode due to the acetal unit at the bridgehead centre C(1).

**Introduction.** – A few years ago, we reported the first example of a formal [4 + 2]-cycloaddition of a 1,3-diene to a monoolefin induced by a transition metal, namely, the cyclodimerization of 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene (1) in the presence of  $[Fe_2(CO)_9]$  giving the partially deoxygenated dimer 2 and the corresponding *exo-* and *endo-*Fe(CO)<sub>3</sub> diene complexes 3 and 4 [1]. Later, we showed that the cyclodimerization of 1 can be assisted by other d<sup>8</sup>-metal carbonyls such as  $[Ru_3(CO)_{12}]$  [2]. We also found that heating 1 with catalytical amounts of  $[Os_3(CO)_{12}]$  in MeOH afforded mixtures containing products 5 and 6 [2].

Since compounds **2–6** are potential precursors in the synthesis of antitumoral anthracyclines [3–5], we explored the possibility to obtain *C*-disubstituted derivatives of **2** through the induced cyclodimerization of 1-substituted 7-oxanorbornenes **7** and **8** [5] which are readily available from the inexpensive *Diels-Alder* adducts of maleic anhydride to furan-2-methanol and 2-(dimethoxymethyl)furan, respectively. Our results show that the [4 + 2]-cycloaddition is strongly affected by substitution at C(1) of the 5,6-dimeth-ylidene-7-oxabicyclo[2.2.1]hept-2-ene systems. Interestingly, the [4 + 2]-cycloadimerization of **8** shows a modest '*trans*' regioselectivity due to the dimethoxymethyl group.

<sup>&</sup>lt;sup>1</sup>) Part of the planned Ph. D. thesis of *Edia Bonfantini*, Ecole Polytechnique Fédérale de Lausanne.



Results and Discussion. - The synthesis of triene 7 started with the Diels-Alder adduct 9 (85%) of maleic anhydride to furan-2-methanol. Reduction with LiAlH<sub>4</sub> in THF gave triol 10 (65%) which was esterified to 11 (71%) with  $CH_3SO_2Cl$  and pyridine. Treatment of 11 with a large excess of t-BuOK in CH<sub>3</sub>CN afforded 12 (43%). Transalcoholysis with EtOH and KOH furnished 7 (73%). By treatment with KOH in MeOH ( $65^{\circ}$ , 15 h), 7 (48%) can be obtained directly from 11. The synthesis of triene-acetal 8 has already been described [5].



On heating trienol 7 with various amounts of  $[Fe_2(CO)_q]$  in MeOH for several days, slow decomposition was observed together with the formation of the corresponding complexes 13-15. Less than 5% of possible dimeric products were present if any, thus demonstrating the defavourable influence of the CH<sub>2</sub>OH group at C(1) on the cyclodimerization of the triene. Heating of 7 in MeOH with  $[Ru_3(CO)_{12}]$  or  $[Os_3(CO)_{12}]$  was not more successful and did not lead to any observable products of condensation.





14 Z=CH2OH, M=exo-Fe(CO)3 15 Z=CH2OH, M=endo-Fe(CO)3 17 Z=CH(OMe)<sub>2</sub>, M=exo-Fe(CO)<sub>3</sub> 18 Z=CH(OMe)2, M=endo-Fe(CO)3

On heating triene-acetal 8 in MeOH with an excess of  $[Fe_2(CO)_9]$  (40–70°, Ar), the monocomplex 16 was formed first which was then transformed into a mixture of dicomplexes 17 and 18. Under these conditions, 16 gave also 18–30% of products of cyclo-dimerization 19 (2–5%) and 20 (1–3%) together with the corresponding *exo-* and *endo*-Fe(CO)<sub>3</sub> complexes 21 (6–10%), 22 (3–4%), 23 (3–5%), and 24 (2–4%) that were separated and isolated by column chromatography on silica gel. Their structures were given by their elemental analyses and their spectral data (see *Exper. Part*). They were confirmed by X-ray crystallography of 21 (see below) and by oxidative demetallations (Ce(NH<sub>4</sub>)<sub>2</sub>(NO<sub>3</sub>)<sub>6</sub>) of 21 and 22 into the '*trans*' adduct 27, and of 23 and 24 into the '*cis*' isomer 28. A regioselectivity of *ca.* 1.7:1 for the '*trans*' vs. '*cis*' cycloadducts was thus determined.



**19**  $Z = CH(OMe)_2 = Z'$ **27**  $Z = CH(OMe)_2, Z' = CHO$ 



**20**  $Z = CH(OMe)_2 = Z'$ **28**  $Z = CH(OMe)_2, Z' = CHO$ 







**21** M=*exo*-Fe(CO)<sub>3</sub>, Z=CH(OMe)<sub>2</sub> **22** M=*endo*-Fe(CO)<sub>3</sub>, Z=CH(OMe)<sub>2</sub>

**23** M=exo-Fe(CO)<sub>3</sub>, Z=CH(OMe)<sub>2</sub> **24** M=endo-Fe(CO)<sub>3</sub>, Z=CH(OMe)<sub>2</sub> **26** Z=0

**25** Z=CH(OMe)<sub>2</sub>, R=H **26** Z=CH(OMe)<sub>2</sub>, R=COOCH<sub>3</sub>

All our attempts (addition of CH<sub>3</sub>CN, Ph<sub>3</sub>P; change of the temperature: 40–80; change of solvent: EtOH, i-PrOH, THF/H<sub>2</sub>O; mode of addition and excess of  $[Fe_2(CO)_9]$ ] to improve the overall yield of products of cyclodimerization were not met with success. The cyclodimerization was in fact inhibited by coordinating adjuvants such as CH<sub>3</sub>CN. The relatively mediocre yield of products **19–24** was due to the competitive formation of the dicomplexes **17** and **18** which were transformed irreversibly into the *ortho*-quinodimethane complexes **25** and **26** [5]. The triene-acetal **8** did not react with  $[Ru_3(CO)_{12}]$  (in toluene, 15 days, 65–70°) or  $[Os_3(CO)_{12}]$  (MeOH, 7 days, 65°). Under these conditions, the unsubstituted triene **1** was found to undergo cyclodimerization.

When a 1:1 mixture of unsubstituted triene 1 and triene-acetal 8 was treated with  $[Fe_2(CO)_9]$  in MeOH, only products of cyclodimerization of 1 were observed. Similarly, heating mixtures of (alkene)tetracarbonyliron complexes 16 and 27 in MeOH (50–70°) did not lead to the formation of products of cross-cyclodimerization. Products 2-4 resulting from the cyclodimerization of 27 were formed *ca*. 10 times faster than the decomposition of 16, thus demonstrating the retarding effect of the (dimethoxy)methyl group of 16 on the [4 + 2]-cycloaddition.

In the presence of catalytical amounts of protic acids (e.g. HCl, AcOH), the bisacetals 19–24 were converted selectively into the corresponding 1-(dimethoxymethyl)-anthracenecarbaldehydes. Crystal Structure Determination of **21**. Cyclodimer **21** crystallizes as yellow parallelepipeds. X-Ray intensity data collection was carried out with an Enraf-Nonius-CAD4 automatic diffractometer. The crystal data, intensity collection, structure solution, and refinement methods are summarized in Table 1. The structure was solved by direct methods. All H-atoms were located and, in the final least-squares refinement, non-H-atom anisotropic temperature factors included in the refinement, and H-atom isotropic temperature factors set to 1.3 times U(equiv.) of the bonding atom. All calculations were carried out on a VAX-11/750, using VAXSDP [7]. Scattering factors for the neutral atoms and anomalous dispersion coefficients were taken from [8]. Final atomic coordinates, tables of observed and calculated structure factors, temperature factors, and a detailed description of data collection, structure solution, and refinement are available as supplementary material from the authors upon request and are deposited with the Cambridge Crystallographic Data Center.

| Crystal Data                                                          |               |                                                         |                                                                                                            |                                |  |  |
|-----------------------------------------------------------------------|---------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|
| Mol. wt.<br>F(000)<br>Crystal dimensions<br>Peak width at half-height |               | 512.34                                                  | Monoclinic space group $P2(1)/c$                                                                           |                                |  |  |
|                                                                       |               | 1072                                                    | a = 12.548(1), b = 14.371(2), c = 13.603(1)  Å<br>$\beta = 96.92(1)^{\circ}$<br>$V = 2435.1 \text{ Å}^{3}$ |                                |  |  |
|                                                                       |               | $0.32 \times 0.22 \times 0.14$ mm                       |                                                                                                            |                                |  |  |
|                                                                       |               | . 0.15°                                                 |                                                                                                            |                                |  |  |
| $MoK_{\alpha}$ radiation Temp.                                        |               | $\lambda = 0.71073$ Å                                   | Z = 4                                                                                                      |                                |  |  |
|                                                                       |               | 21 ● 1°                                                 | $\rho = 1.40 \text{ g/cm}^3, \mu = 6.6 \text{ cm}^{-1}$                                                    |                                |  |  |
| Intensity Measurem                                                    | ents          | . <u> </u>                                              |                                                                                                            |                                |  |  |
| Instrument                                                            | Enro          | af-Nonius-CAD4                                          | Scan rate                                                                                                  | $1-7^{\circ}/\min(in \omega)$  |  |  |
|                                                                       | diffi         | ractometer                                              | Scan width, deg                                                                                            | $0.8 + 0.34 \tan \theta$       |  |  |
| Monochromator                                                         | grag          | phite crystal, incident beam                            | Maximum $2\theta$                                                                                          | 52.0°                          |  |  |
| Attenuator Zr foi                                                     |               | oil, factor 19.5                                        | No. of refl. measured                                                                                      | 6090 total, 3979 unique        |  |  |
| Take-off angle                                                        | $2.8^{\circ}$ |                                                         | Corrections                                                                                                | Lorentz polarization           |  |  |
| Detector aperture                                                     | 1.6-          | -1.7 mm horizontal,                                     |                                                                                                            | linear decay (from             |  |  |
|                                                                       | 4.0           | mm vertical                                             |                                                                                                            | 0.976 to 1.061 on I)           |  |  |
| Crystal-detector                                                      | 21 c          | m                                                       |                                                                                                            | reflection averaging           |  |  |
| dist.                                                                 |               |                                                         |                                                                                                            | (agreement on                  |  |  |
| Scan type                                                             | ω –           | -2	heta                                                 |                                                                                                            | I = 1.5%)                      |  |  |
| Structure Solution d                                                  | ind Re        | efinement                                               |                                                                                                            |                                |  |  |
| Solution                                                              |               | direct methods                                          | Weighted agreement factor                                                                                  | 0.044                          |  |  |
| Refinement                                                            |               | full-matrix least-squares                               | Esd. of obs. of unit weight                                                                                | 1.86                           |  |  |
| Minimization function                                                 |               | $\Sigma \omega ( F_{\rm o}  -  F_{\rm c} )^2$           | Convergence, largest shift                                                                                 | 0.21                           |  |  |
| Least-squares weights                                                 |               | $4F_{0}^{2}/\sigma^{2}(F_{0}^{2})$                      | High peak in final diff. map                                                                               | $0.27(4) \text{ e}/\text{Å}^3$ |  |  |
| Anomalous dispersion                                                  |               | all non-H-atoms                                         | Low peak in final diff. map                                                                                | $-0.23(4) \text{ e/Å}^3$       |  |  |
| Reflections included                                                  |               | 2592 with $F_{\rm o}^2 > 3.0 \sigma({\rm F}_{\rm o}^2)$ | Computer hardware                                                                                          | VAX11/750                      |  |  |
| Parameters refined                                                    |               | 391                                                     | Computer software                                                                                          | SDP/VAX (Enraf-                |  |  |
| Unweighted agreement                                                  |               | 0.034                                                   | Nonius&B. A                                                                                                |                                |  |  |
| factor                                                                |               |                                                         |                                                                                                            | & Associates, Inc.)            |  |  |

Table 1. Crystal Data for 21 (C25H28FeO8), Intensity Measurements, Structure Solution, and Refinement

Calculated bond lengths, interatomic distances, bond angles, and selected torsional angles are given in *Tables 2–5*. Two perspective drawings of the molecule are shown in the *Figure*.

The molecular structure of **21** (*Fig.*) displays a few unexpected features which deserve comments. Out of the two possible staggered conformations of the (dimethoxy)-methyl group at the bridgehead centre C(1) of the 7-oxanorbornane moiety, the one leading to interactions with the Fe(CO)<sub>3</sub> moiety is preferred (*Fig.*, b). This interaction imposes a rotation of the Fe(CO)<sub>3</sub> tripod from the usual local  $C_s$  symmetry observed in

| Table 2. Bond Distances [Å] <sup>a</sup> ) |                       |                          |                           |                     |          |  |  |
|--------------------------------------------|-----------------------|--------------------------|---------------------------|---------------------|----------|--|--|
| Fe-C(13)                                   | 2.043(3)              | O(4)-C(23)               | 1.433(5)                  | C(5)-C(6)           | 1.388(5) |  |  |
| Fe-C(14)                                   | 2.079(3)              | O(5)-C(24)               | 1.148(4)                  | C(6)C(7)            | 1.391(5) |  |  |
| Fe-C(16)                                   | 2.127(3)              | O(6)-C(25)               | 1.154(4)                  | C(7)-C(8)           | 1.390(4) |  |  |
| Fe-C(17)                                   | 2.136(4)              | O(7)-C(26)               | 1.133(5)                  | C(8)-C(9)           | 1.401(5) |  |  |
| Fe-C(24)                                   | 1.776(3)              | O(15) - C(1)             | 1.443(3)                  | C(8)-C(21)          | 1.512(4) |  |  |
| Fe-C(25)                                   | 1.766(4)              | O(15)-C(12)              | 1.452(3)                  | C(9)-C(10)          | 1.499(4) |  |  |
| Fe-C(26)                                   | 1.788(3)              | C(1) - C(2)              | 1.559(4)                  | C(10) - C(11)       | 1.532(4) |  |  |
| O(1)-C(18)                                 | 1.397(3)              | C(1)-C(14)               | 1.529(4)                  | C(11)C(12)          | 1.532(4) |  |  |
| O(1)-C(19)                                 | 1.431(4)              | C(1)-C(18)               | 1.518(4)                  | C(12)-C(13)         | 1.512(4) |  |  |
| O(2)-C(18)                                 | 1.405(3)              | C(2)-C(3)                | 1.546(4)                  | C(13)-C(14)         | 1.401(4) |  |  |
| O(2)-C(20)                                 | 1.438(3)              | C(2) - C(11)             | 1.565(4)                  | C(13)-C(16)         | 1.415(4) |  |  |
| O(3)–C(21)                                 | 1.413(3)              | C(3)–C(4)                | 1.513(4)                  | C(14)-C(17)         | 1.421(4) |  |  |
| O(3)-C(22)                                 | 1.430(5)              | C(4)-C(5)                | 1.377(4)                  |                     |          |  |  |
| O(4)-C(21)                                 | 1.399(4)              | C(4)-C(9)                | 1.401(4)                  | _                   |          |  |  |
| <sup>a</sup> ) Numbers in                  | parentheses are estin | nated standard deviation | ons in the least signi    | ficant digits.      |          |  |  |
|                                            |                       | Table 3. Interatomic     | Distances [Å]             |                     |          |  |  |
|                                            | C(24)-O(2)            | 2.890                    | O(2)O(5)                  | 2.932               |          |  |  |
|                                            | C(24)-C(20)           | 3.302                    | O(5)-C(20)                | 3.108               |          |  |  |
|                                            | C(24)-H(19)           | <sup>a</sup> ) 3.416     | O(5)-H(19) <sup>a</sup> ) | 2.903               |          |  |  |
|                                            | C(24)-H(20)           | <sup>a</sup> ) 2.986     | H(20) <sup>a</sup> )      | 3.001               |          |  |  |
|                                            | C(24)-H(21)           | <sup>a</sup> ) > 4       | H(21) <sup>a</sup> )      | > 4                 |          |  |  |
| <sup>a</sup> ) H(19), H(20                 | ), and H(21) are the  | H-atoms on C(20) (one    | e methyl group of th      | e dimethyl acetal). |          |  |  |
|                                            |                       | Table 4. Bond 2          | Angles [°]                |                     |          |  |  |
| C(13)-Fe-C(14)                             | 39.7(1)               | C(1)-O(15)-C(12)         | 96.4(2)                   | C(2)-C(11)-C(12)    | 100.9(2) |  |  |
| C(13)-Fe-C(16)                             | 39.6(2)               | O(15)-C(1)-C(2)          | 101.2(2)                  | C(10)-C(11)-C(12)   | 113.0(2) |  |  |
| C(13)-Fe-C(17)                             | 71.7(1)               | O(15)-C(1)-C(14)         | 101.9(3)                  | O(15)-C(12)-C(11)   | 102.3(3) |  |  |
| C(13)-Fe-C(24)                             | 132.5(1)              | O(15)-C(1)-C(18)         | 111.2(3)                  | O(15)-C(12)-C(13)   | 102.8(3) |  |  |
| C(13)-Fe-C(25)                             | 126.6(1)              | C(2)-C(1)-C(14)          | 105.9(3)                  | C(11)-C(12)-C(13)   | 105.6(2) |  |  |
| C(13)-Fe-C(26)                             | 92.9(1)               | C(2)-C(1)-C(18)          | 115.7(2)                  | Fe-C(13)-C(12)      | 126.2(2) |  |  |
| C(14)-Fe-C(16)                             | 71.2(1)               | C(14)-C(1)-C(18)         | 118.6(2)                  | Fe-C(13)-C(14)      | 71.6(2)  |  |  |
| C(14)-Fe-C(17)                             | 39.4(2)               | C(1)-C(2)-C(3)           | 114.3(2)                  | Fe-C(13)-C(16)      | 73.4(2)  |  |  |
| C(14)-Fe-C(24)                             | 101.5(1)              | C(1)-C(2)-C(11)          | 101.2(2)                  | C(12)-C(13)-C(14)   | 104.7(2) |  |  |
| C(14)-Fe-C(25)                             | 131.2(1)              | C(3)-C(2)-C(11)          | 111.0(2)                  | C(12)-C(13)-C(16)   | 134.5(3) |  |  |
| C(14)-Fe-C(26)                             | 121.3(1)              | C(2)-C(3)-C(4)           | 110.1(2)                  | C(14)-C(13)-C(16)   | 120.9(3) |  |  |
| C(16)-Fe-C(17)                             | 83.6(1)               | C(3) - C(4) - C(5)       | 123.2(3)                  | Fe-C(14)-C(1)       | 128.0(2) |  |  |
| C(16)-Fe-C(24)                             | 172.1(1)              | C(3)-C(4)-C(9)           | 116.2(3)                  | Fe-C(14)-C(13)      | 68.8(2)  |  |  |
| C(16)-Fe-C(25)                             | 88.5(1)               | C(5)-C(4)-C(9)           | 120.5(3)                  | Fe-C(14)-C(17)      | 72.5(2)  |  |  |
| C(16)-Fe-C(26)                             | 92.1(1)               | C(4) - C(5) - C(6)       | 119.8(3)                  | C(1)-C(14)-C(13)    | 104.1(2) |  |  |
| C(17)-Fe-C(24)                             | 92.6(1)               | C(5) - C(6) - C(7)       | 120.1(3)                  | C(1)-C(14)-C(17)    | 135.8(3) |  |  |
| C(17)-Fe-C(25)                             | 96.1(1)               | C(6) - C(7) - C(8)       | 120.6(3)                  | C(13)-C(14)-C(17)   | 120.2(2) |  |  |
| C(17)-Fe-C(26)                             | 160.5(1)              | C(7) - C(8) - C(9)       | 119.1(3)                  | Fe-C(16)-C(13)      | 67.0(2)  |  |  |
| C(24)-Fe-C(25)                             | 98.8(1)               | C(7) - C(8) - C(21)      | 121.1(3)                  | Fe-C(17)-C(14)      | 68.2(2)  |  |  |
| C(24)-Fe-C(26)                             | 89.3(1)               | C(9)-C(8)-C(21)          | 119.8(3)                  | O(1)-C(18)-O(2)     | 108.3(2) |  |  |
| C(25)-Fe-C(26)                             | 102.8(2)              | C(4)-C(9)-C(8)           | 119.7(3)                  | O(1)-C(18)-C(1)     | 104.6(3) |  |  |
| C(18)-O(1)-C(1                             | 9) 114.0(3)           | C(4)-C(9)-C(10)          | 114.9(2)                  | O(2)-C(18)-C(1)     | 113.5(2) |  |  |
| C(18)-O(2)-C(2                             | 0) 114.1(2)           | C(8)-C(9)-C(10)          | 125.3(3)                  | O(3)-C(21)-O(4)     | 111.8(2) |  |  |
| C(21)-O(3)-C(2                             | 2) 115.4(3)           | C(9)-C(10)-C(11)         | 109.4(2)                  | O(3)-C(21)-C(8)     | 113.6(2) |  |  |
| C(21)-O(4)-C(2                             | 3) 112.7(3)           | C(2)-C(11)-C(10)         | 112.4(2)                  | O(4)-C(21)-C(8)     | 108.6(2) |  |  |
| Fe-C(24)-O(5)                              | 175.3(3)              | Fe-C(25)-O(6)            | 177.5(3)                  | Fe-C(26)-O(7)       | 177.7(3) |  |  |
| Numbers in pare                            | ntheses are estimated | l standard deviations i  | n the least significar    | nt digits.          |          |  |  |

| $\overline{C(2)-C(1)-C(14)-C(13)}$ | 71.50(0.26)   | C(7)-C(8)-C(21)-O(3)         | -121.63(0.28) |
|------------------------------------|---------------|------------------------------|---------------|
| C(2)-C(1)-C(14)-C(17)              | -110.03(0.35) | C(7)-C(8)-C(21)-O(4)         | 3.44(0.35)    |
| C(2)-C(1)-C(18)-O(1)               | 61.86(0.28)   | C(9)-C(8)-C(21)-O(3)         | 60.26(0.33)   |
| C(2)-C(1)-C(18)-O(2)               | 179.56(0.21)  | C(9)-C(8)-C(21)-O(4)         | -174.67(0.24) |
| C(14)-C(1)-C(18)-O(1)              | -65.75(0.29)  | C(19) - O(1) - C(18) - C(1)  | -169.69(0.24) |
| C(14)-C(1)-C(18)-O(2)              | 51.95(0.32)   | C(20) - O(2) - C(18) - C(1)  | 91.36(0.28)   |
| C(11)-C(2)-C(3)-C(4)               | 48.85(0.30)   | C(22) - O(3) - C(21) - C(8)  | 59.87(0.34)   |
| C(1)-C(2)-C(11)-C(12)              | 0.12(0.25)    | C(4)-C(9)-C(10)-C(11)        | 54.25(0.32)   |
| C(3)-C(2)-C(11)-C(10)              | 1.20(0.31)    | C(9)-C(10)-C(11)-C(2)        | -52.11(0.29)  |
| C(2)-C(3)-C(4)-C(9)                | -50.99(0.33)  | C(2)-C(11)-C(12)-C(13)       | 71.97(0.25)   |
| C(3)-C(4)-C(5)-C(6)                | -176.46(0.28) | C(11)-C(12)-C(13)-C(14)      | -76.17(0.26)  |
| C(9)-C(4)-C(5)-C(6)                | 2.16(0.45)    | C(11)-C(12)-C(13)-C(16)      | 103.42(0.36)  |
| C(3)-C(4)-C(9)-C(10)               | -1.94(0.37)   | C(23) - O(4) - C(21) - C(8)  | 175.36(0.26)  |
| C(5)-C(4)-C(9)-C(8)                | -2.36(0.43)   | C(12) - O(15) - C(1) - C(2)  | -57.69(0.22)  |
| C(4)-C(5)-C(6)-C(7)                | 0.16(0.46)    | C(12) - O(15) - C(1) - C(14) | 51.47(0.22)   |
| C(5)-C(6)-C(7)-C(8)                | -2.30(0.45)   | C(1)-O(15)-C(12)-C(11)       | 58.67(0.22)   |
| C(6)-C(7)-C(8)-C(9)                | 2.07(0.41)    | C(1)-O(15)-C(12)-C(13)       | -50.74(0.23)  |
| C(6)-C(7)-C(8)-C(21)               | -176.05(0.26) | C(14)-C(1)-C(2)-C(11)        | -70.84(0.24)  |
| C(7)-C(8)-C(9)-C(4)                | 0.24(0.41)    | C(12)-C(13)-C(14)-C(1)       | 1.81(0.28)    |
| C(7)-C(8)-C(9)-C(10)               | 178.34(0.26)  | C(16)-C(13)-C(14)-C(17)      | 3.38(0.42)    |
|                                    |               |                              |               |

Table 5. Selected Torsional Angles [°]



Figure. ORTEP representation [9] of **21**. For reason of simplicity, the atom numbering does not follow the IUPAC rules. Heavy atoms are reproduced with 50% thermal ellipsoids, the H-atoms have been omitted for clarity.

the crystalline state of a large number of  $[Fe(CO)_3(1,3\text{-diene})]$  complexes [10] and for which the two valence-bond representations  $28 \leftrightarrow 29$  have been widely used to describe the iron-diene bonding [11].

With the help of variable-temperature circular dichroism of optically pure  $[Fe(CO)_3(diene)]$  complexes [12] [13], we have shown that these complexes involve in fact equilibria between pairs of rapidly interconverting rotamers of diastereoisomeric species



having a  $\sigma$ -alkyl, $\eta^3$ -allyl type of bonding. The acetal group at C(1) in **21** lifts the degeneracy or near-degeneracy of that equilibrium favouring only one of the two possible asymmetric structures in which not only the Fe(CO)<sub>3</sub> tripod has been rotated but also the bond lengths of the diene unit are not equivalent (see *Formula* **21**') and deviate from the average bond lengths determined for  $C_s$  symmetrical derivatives [10]. If the rotation of the Fe(CO)<sub>3</sub> tripod had been demanding in energy, it would have led to a rotation of the (MeO)<sub>2</sub>CH-C(1) group from its nearly perfectly staggered conformation with respect to the 7-oxanorbornane skeleton (*Fig.*, *b*). Thus, our results demonstrate the great ease for the Fe(CO)<sub>3</sub> tripod to deviate from the local  $C_s$  symmetry [14].

The distance (2.89 Å) between atoms C(24) and O(2) of the interacting carbonyl and methoxy groups, respectively, is not greater than the sum of the *van der Waals* radii for C and O atoms. This leaves the possibility for a weak, stabilizing interaction between the carbonyl and methoxy functions which can be assigned to an electrostatic effect due to their dipole moments. This hypothesis is confirmed by the slight bending of  $4.7^{\circ}$  measured for the concerned Fe=C=O unit. Thus, without that stabilizing interaction, it is not excluded that the deviation of the Fe(CO)<sub>3</sub> tripod from the local  $C_s$  symmetry could be even larger.

Another remarkable feature of the structure of **21** are the angles  $\alpha,\beta$ , and  $\gamma$  between the average planes of its 7-oxanorbornane skeleton (see above). X-Ray data of a large number of bicyclo[2.2.1]heptanes and bicyclo[2.2.1]hept-2-enes have shown that the introduction of an endocyclic double bond into the bicyclic system pushes the CH<sub>2</sub>(7) or O(7) bridge away from the unsaturated centres [15]. Force-field and quantum calculations [16] have suggested that this is due to the shortening of bond C(2)–C(3) when going from norbornanes to norborn-2-enes. In agreement with that interpretation, we find for **21** that the O-bridge is 'repelled' by the C(13)–C(14) bond of the butadiene moiety (angle  $\gamma >$ angle  $\beta$ ), because it is shorter (1.401 Å) than bond C(2)–C(11) (1.565 Å).

We thank F. Hoffmann-La Roche & Co. AG, Basel, the Swiss National Science Foundation, and the Fonds Herbette, Lausanne, and the College of Arts and Science of the University of Toledo for financial support.

## **Experimental Part**

General. See [17]. None of the procedures reported has been optimized.

*1-(Hydroxymethyl)-7-oxabicyclo*[*2.2.1*]*hept-5-ene-2-* exo, *3-* exo-*dicarboxylic Anhydride* (9). Furan-2-methanol (82.4 g, 0.84 mol) was added dropwise to a soln. of maleic anhydride (107 g, 1.1 mol) in Et<sub>2</sub>O (1100 ml). After staying 6 days at 20°, the precipitate was washed with cold Et<sub>2</sub>O, yielding 139.5 g (85%), white powder, M.p. 71–78° (dec.). IR (KBr): 3370, 3100, 1860, 1790, 1235, 1225, 1210, 1150, 1090, 1050, 1035, 995, 980, 925. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 6.65 (*d*, <sup>3</sup>*J* = 5.5, H–C(6)); 6.62 (*dd*, <sup>3</sup>*J* = 5.5, 1.7, H–C(5)); 5.44 (*d*, <sup>3</sup>*J* = 1.7, H–C(4)); 4.23, 4.17 (2*d*, <sup>2</sup>*J* = 12.5, CH<sub>2</sub>OH); 3.35, 3.27 (2*d*, <sup>3</sup>*J* = 7, H–C(2), H–C(3)). MS (70 eV): 196 (1,  $M^{+r}$ ), 100 (18), 99 (18), 98 (34), 97 (77), 81 (98), 54 (98), 53 (100). Anal. calc. for C<sub>9</sub>H<sub>8</sub>O<sub>5</sub> (196.158): C 55.11, H 4.11; found: C 54.94, H 4.10.

7-Oxabicyclo[2.2.1]hept-5-ene-1,2-exo,3-exo-trimethanol (10). A soln. of 9 (30 g, 0.153 mol) in anh. THF (230 ml) was added slowly to a stirred suspension of LiAlH<sub>4</sub> (14 g, 0.37 mol) in anh. THF (280 ml) cooled to 0° under N<sub>2</sub>. After stirring at 0° for 2 h, the mixture was heated under reflux for 3 h. After cooling to 20°, H<sub>2</sub>O (70 ml) was added dropwise under vigourous stirring. This operation was repeated twice. After the addition of EtOH (200 ml), the soln. was heated under reflux for 1 h and filtered through silica gel. The precipitate/silica gel was washed with hot EtOH (200 ml, 3 times). The EtOH extracts were evaporated, and the residue was crystallized from EtOH, yielding 18.5 g (65%), colourless crystals. M.p. 146–147.5°. IR (KBr): 3280, 3180, 2960, 2920, 1475, 1460, 1375, 1320, 1250, 1180, 1105, 1035, 1015, 980, 960, 940, 915. <sup>1</sup>H-NMR (360 MHz, CD<sub>3</sub>OD): 6.49 (s, H-C(5), H-C(6)); 4.89 (s, H-C(4)); 4.12, 3.97 (2d, <sup>2</sup>J = 12, CH<sub>2</sub>-C(1)); 3.92–3.57 (4m, CH<sub>2</sub>-C(2), CH<sub>2</sub>-C(3)); 2.07 (m, H-C(2), H-C(3)). <sup>13</sup>C-NMR (90.55 MHz, CD<sub>3</sub>OD): 138.3, 136.7 (2d, <sup>1</sup>J (C, H) = 175, C(5), C(6)); 92.2 (s,

C(1)); 81.6 (d, <sup>1</sup>J(C, H) = 160, C(4)); 62.4, 61.4, 60.5 (3t, <sup>1</sup>J(C, H) = 140, 3 CH<sub>2</sub>OH); 45.9, 44.5 (2d, <sup>1</sup>J(C, H) = 135, C(2), C(3)). MS (70 eV): 107 (12), 98 (100), 97 (62), 91 (22), 81 (54), 79 (36), 77 (53), 70 (88). Anal. calc. for C<sub>9</sub>H<sub>14</sub>O<sub>4</sub> (186.196): C 58.05, H 7.58; found: C 57.97, H 7.54.

7-Oxabicyclo[2.2.1]hept-5-ene-1,2- exo,3- exo-trimethyl Trimethanesulfonate (11). Methanesulfonyl chloride (41 ml, 525 mmol) was added dropwise under stirring and N<sub>2</sub> to a soln. of **10** (12.7 g, 68.2 mmol) in anh. pyridine (115 ml) cooled to 0°. After stirring at 0° for 2 h, the mixture was allowed to stay at 20° for 4 days. The mixture was poured into a vigourously stirred mixture H<sub>2</sub>O/ice. The precipitate was triturated with CH<sub>2</sub>Cl<sub>2</sub> and washed with ice-cold H<sub>2</sub>O and then with CH<sub>2</sub>Cl<sub>2</sub>. The org. layer was washed with H<sub>2</sub>O, dried (MgSO<sub>4</sub>), and evaporated. The residue was crystallized from CH<sub>3</sub>CN yielding 20.5 g (71%), white solid. M.p. 134–137° (dec.). IR (KBr): 3100, 3040, 2940, 1470, 1425, 1340, 1175, 995, 955, 860, 825. <sup>1</sup>H-NMR (360 MHz, CD<sub>3</sub>CN): 6.50 (dd, <sup>3</sup>J = 6.0, 2, H-C(5)); 6.40 (d, <sup>3</sup>J = 6.0, H-C(6)); 4.90 (d, <sup>3</sup>J = 2, H-C(4)); 4.80, 4.58 (2d, <sup>2</sup>J = 12, CH<sub>2</sub>-C(1)); 4.42–4.15 (4m, CH<sub>2</sub>-C(2), CH<sub>2</sub>-C(3)); 3.10, 3.076, 3.069 (3s, CH<sub>3</sub>); 2.33 (m, H-C(2), H-C(3)). <sup>13</sup>C-NMR (90.55 MHz, CD<sub>3</sub>CN): 138.1, 137.5 (2d, <sup>1</sup>J(C, H) = 175, C(5), C(6)); 90.4 (s, C(1)); 81.7 (d, <sup>1</sup>J(C, H) = 165, C(4)); 71.0, 69.4, 69.1 (3t, <sup>1</sup>J(C, H) = 150, 3 CH<sub>2</sub>O<sub>3</sub>, 13.1 (30, 109 (4), 98 (8), 97 (100), 96 (21), 95 (8), 91 (4), 81 (39), 80 (14), 79 (80). Anal. calc. for C<sub>12</sub>H<sub>20</sub>O<sub>10</sub>S<sub>3</sub> (420.474): C 34.28, H 4.79; found: C 34.39, H 4.76.

5,6-Dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene-1-methyl Methanesulfonate (12). Compd. 11 (1 g, 2.38 mmol) was dissolved in hot CH<sub>3</sub>CN (40 ml). After cooling to 20° under N<sub>2</sub>, *t*-BuOK (4 g, 35.5 mmol) was added portionwise. After stirring at 20° for 20 min, H<sub>2</sub>O (100 ml) was added. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (40 ml, 4 times). The extract was dried (MgSO<sub>4</sub>), evaporated, and purified by chromatography on silica gel (100 g, AcOEt/CH<sub>2</sub>Cl<sub>2</sub> 1:9) yielding 225 mg (47%), colourless solid which could be recrystallized from Et<sub>2</sub>O at  $-20^{\circ}$ . M.p. 54–55°. UV (95% EtOH): 205 (13 500), 221 (sh, 9400), 231 (8800). IR (KBr): 3080, 3020, 2960, 2930, 1415, 1340, 1280, 1165, 1060, 990, 960. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 6.53 (dd, <sup>3</sup>J = 5.7, 1.7, H–C(3)); 6.37 (d, <sup>3</sup>J = 5.7, H–C(2)); 5.37, 5.30, 5.16, 5.03 (4s, CH<sub>2</sub>=C(5), CH<sub>2</sub>=C(6)); 5.21 (s, H–C(4)); 4.90, 4.76 (2d, <sup>2</sup>J = 12.5, CH<sub>2</sub>O); 3.10 (s, Me). <sup>13</sup>C-NMR (90.55 MHz, CDCl<sub>3</sub>): 143.3, 142.3 (2s, C(5), C(6)); 137.1, 134.3 (2d, <sup>1</sup>J(C,H) = 180, C(2), C(3)); 103.0, 102.4 (2t, <sup>1</sup>J(C,H) = 160, CH<sub>2</sub>=C(5), CH<sub>2</sub>=C(6)); 88.8 (s, C(1)); 82.2 (dm, <sup>1</sup>J(C,H) = 168, C(4)); 66.3 (t, <sup>1</sup>J(C,H) = 150, CH<sub>2</sub>-C(1)); 37.9 (q, <sup>1</sup>J(C,H) = 140, Me). MS (70 eV): 228 (0.2, *M*<sup>+</sup>), 199 (0.3), 176 (3), 132 (11), 104 (53), 97 (42), 91 (100). Anal. calc. for C<sub>10</sub>H<sub>12</sub>O<sub>4</sub>S (228.266): C 52.62, H 5.30; found: C 52.21, H 5.29.

5,6-Dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene-1-methanol (7). A mixture of **12** (467 mg, 2.04 mmol) in anh. EtOH (10 ml) and KOH (1.5 g, 26.7 mmol) was stirred at 60° for 5 h. After the addition of H<sub>2</sub>O (50 ml), the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (110 ml, 4 times). The combined extracts were washed with H<sub>2</sub>O (200 ml), dried (MgSO<sub>4</sub>) and evaporated. The residue was purified by column chromatography on silica gel (AcOEt/CH<sub>2</sub>Cl<sub>2</sub> 1:5) yielding 225 mg (73%), colourless oil that crystallized from toluene and CH<sub>2</sub>Cl<sub>2</sub> at  $-20^{\circ}$ . M.p. 58–59°. IR (KBr): 3460, 3060, 3000, 2940, 2910, 2180, 1640, 1600, 1405, 1320, 1285, 1255, 1230, 1145, 1075, 1040, 995, 965, 900. UV (95% EtOH): 205 (12 200), 222 (sh, 8800), 232 (8300). <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 6.51 (dd, <sup>3</sup>J = 5.5, 2, H–C(3)); 6.36 (d, <sup>3</sup>J = 5.5, H–C(2)); 5.35, 5.28, 5.12, 5.0 (4s, CH<sub>2</sub>=C(5), CH<sub>2</sub>=C(6)); 5.19 (s, H–C(4)); 4.26, 4.17 (2d, <sup>2</sup>J = 12.5, CH<sub>2</sub>–C(1)). <sup>13</sup>C-NMR (90.55 MHz, CDCl<sub>3</sub>): 144.5, 143.1 (2s, C(5), C(6)); 137.1, 135.6 (2d, <sup>1</sup>J(C, H) = 180, C(2), C(3); 102.3, 102.0 (2t, <sup>1</sup>J(C, H) = 160, CH<sub>2</sub>=C(5), CH<sub>2</sub>=C(6)); 91.7 (s, C(1)); 82.0 (dm, <sup>1</sup>J(C, H) = 165, C(4)); 6.03 (t, <sup>1</sup>J(C, H) = 145, CH<sub>2</sub>–C(1)). CI-MS (NH<sub>3</sub>): 168 (100, M<sup>+</sup> + NH<sub>4</sub>), 151 (13, M<sup>+</sup> + H), 150 (16, M<sup>++</sup>), 133 (10), 123 (6), 105 (10), 96 (16), 91 (98). Anal. calc. for C<sub>9</sub>H<sub>10</sub>O<sub>2</sub> (150.177): C 71.98, H 6.71; found: C 71.92, H 6.67.

Cyclodimerization of 1-(Dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene (8). [Fe<sub>2</sub>(CO)<sub>9</sub>] (7.3 g, 20.1 mmol) was added portionwise to a soln. of 8 [5] (2.2 g, 11.2 mmol) in MeOH, heated to 70°, and gently degassed by a flow (5 ml/min) of Ar. After 26 h at 70°, the mixture was cooled to 20° and filtered. The soln. was evaporated and purified by filtration on a short column of *Florisil* (AcOEt/petroleum ether 1:4). The solvent was evaporated and the residue separated into *Fractions A*, *B*, and *C* by column chromatography on silica gel (*Lobar*, column *C*, AcOEt/petroleum ether 1:5). *Fraction A* was separated into 17 (0.5–1%), 16 (5–7%), and 25 (20–35%) [5] (silica gel, *Lobar*, column *B*, AcOEt/petroleum ether 1:15). *Fraction B* was separated into 16 (0.4%), 21 (8–12%), 26 (1.5%) [5], and 23 (1–2%) (silica gel, *Lobar*, column *B*, AcOEt/petroleum ether 1:4). *Fraction C* was separated into 32 (2–3%), 8 (2–6%), and two fractions *C-1* and *C-2* (silica gel, *Lobar*, column *B*, AcOEt/petroleum ether 1:4). *Fraction C-2* was separated into 22 (3–4%) and 20 (1–3%). Products 19–26 were all recrystallized from MeOH at  $-20^\circ$ .

(1RS,4SR,4aSR,9aRS)-1,5-Bis(dimethoxymethyl)-1,4-epoxy-1,2,3,4,4a,9,9a,10-octahydro-2,3-dimethylideneanthracene (19). White crystals. M.p. 94–95°. IR (KBr): 3010, 2990, 2960, 2940, 2925, 2910, 2840, 1470, 1460, 1450, 1400, 1375, 1210, 1205, 1195, 1115, 1100, 1085, 1065, 960, 930, 910. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 7.32, 7.11  $(2d, {}^{3}J = 7.5, H-C(6), H-C(8)); 7.15 (t, {}^{3}J = 7.5, H-C(7)); 5.47, 5.32, 5.30, 5.18 (4s, CH_{2}=C(2), CH_{2}=C(3)); 4.94, 4.79 (2s, 2 CH(OMe)_{2}); 4.57 (s, H-C(4)); 3.69, 3.66, 3.40, 3.34 (4s, 4 MeO); 3.4-3.34 (m, 1 H), 2.93 (dd, {}^{2}J = 13.5, {}^{3}J = 6, H_{endo}-C(9), H_{endo}-C(10)); 2.68, 2.40 (dd, {}^{2}J = 13.5, {}^{3}J = 11.7, H_{exo}-C(9), H_{exo}-C(10)); 2.23-2.07 (m, H-C(4a), H-C(9a)). {}^{13}C-NMR (90.55 MHz, CDCl_{3}): 149.0, 147.1 (2s, C(2), C(3)); 139.3, 136.7, 133.8 (3s, C(8a), C(10a), C(5)); 127.6, 125.3, 125.0 (3d, {}^{1}J(C, H) = 160, C(6), C(7), C(8)); 106.4, 102.5 (2d, {}^{1}J(C, H) = 160, 2 CH(OMe_{2}); 102.8, 99.7 (2t, {}^{1}J(C, H) = 160, CH_{2}=C(2), CH_{2}=C(3)); 91.5 (s, C(1)); 85.7 (d, {}^{1}J(C, H) = 160, C(4)); 58.1, 57.3, 53.0 (3q, {}^{1}J(C, H) = 142, 4 MeO); 46.2, 45.1 (2d, {}^{1}J(C, H) = 140, C(4a), C(9a)); 29.5, 27.3 (2t, {}^{1}J(C, H) = 130, C(9), C(10)). MS (70 eV): 372 (0.2, M^+), 341 (6), 340 (7), 325 (4), 308 (5), 171 (18), 138 (55), 137 (30), 75 (100). Anal. calc. for C<sub>22</sub>H<sub>28</sub>O<sub>5</sub> (372.461): C 70.94, H 7.58; found: C 70.41, H 7.76.$ 

(l RS, 4 SR, 9a RS)-l, 8-Bis(dimethoxymethyl)-l, 4-epoxy-l, 2, 3, 4, 4a, 9, 9a, 10-octahydro-2, 3-dimethylideneanthracene (**20**). White crystals. M.p. 122–125°. IR (KBr): 3000, 2960, 2950, 2880, 2840, 1455, 1355, 1195, 1190, 1115, 1100, 1085, 1055, 975, 930, 905, 800. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 7.39, 7.19–7.11 (3m,  ${}^{3}J = 7.3$ , H–C(5), H–C(6), H–C(7)); 5.54, 5.37, 5.35, 5.21 (4s, CH<sub>2</sub>=C(2), CH<sub>2</sub>=C(3)); 4.97, 4.74 (2s, 2 CH(OMe)<sub>2</sub>); 4.61 (s, H–C(4)); 3.67, 3.65, 3.34 (3s, 4 MeO); 3.37, 2.88 (2dd,  ${}^{2}J = 13.5$ ,  ${}^{3}J = 5.6$ , H<sub>endo</sub>–C(9), H<sub>endo</sub>–C(10)); 2.72, 2.41 (2dd,  ${}^{2}J = 13.5$ ,  ${}^{3}J = 11.8$ , H<sub>exo</sub>–C(9), H<sub>exo</sub>–C(10)); 2.3–2.2, 2.15–2.05 (2m, H–C(4a), H–C(9a)). <sup>13</sup>C-NMR (90.55 MHz, CDCl<sub>3</sub>): 149.0, 146.6 (2s, C(2), C(3)); 139.1, 137.0, 134.3 (3s, C(8a), C(10a)); 127.1, 125.3, 124.8 (3d,  ${}^{1}J(C, H) = 160$ , C(5), C(6), C(7)); 106.3, 102.8 (2d,  ${}^{1}J(C, H) = 160$ , 2 CH(OMe)<sub>2</sub>); 103.1, 99.6 (2t,  ${}^{1}J(C, H) = 160$ , CH<sub>2</sub>=C(2), CH<sub>2</sub>=C(3)); 91.6 (s, C(1)); 85.7 (d,  ${}^{1}J(C, H) = 160$ , C(4)); 58.2, 57.4, 53.9, 53.1 (4q,  ${}^{1}J(C, H) = 142$ , 4 MeO); 46.4, 45.1 (2d,  ${}^{1}J(C, H) = 138$ , C(4a), C(9a)); 32.5, 24.0 (2t,  ${}^{1}J(C, H) = 128$ , C(9); C(10)). MS (70 eV): 372 (0.1,  $M^+$ ), 340 (12), 171 (11), 138 (33), 137 (25), 75 (100). Anal. calc. for C<sub>22</sub>H<sub>28</sub>O<sub>5</sub> (372.461): C 70.94, H 7.58; found: C 70.98, H 7.66.

 $(1 \text{ RS}, 2 \text{ SR}, 3 \text{ RS}, 4 \text{ RS}, 9a \text{ SR}) - [C, 2, 3, C-\eta - (1, 5-Bis(dimethoxymethyl) - 1, 4-epoxy - 1, 2, 3, 4, 4a, 9, 9a, 10-octa-hydro-2, 3-dimethylideneanthracene) ]tricarbonyliron ($ **21**). Yellow crystals. M.p. 102–103°. IR (KBr): 3010, 2950, 2840, 2040, 1985, 1970, 1455, 1360, 1110, 1085, 1070, 1055, 970, 955, 945, 935. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 7.37, 7.18–7.12 (3*m*, H-C(6), H-C(7), H-C(8)); 5.52, 4.75 (2*s*, CH(OMe)<sub>2</sub>); 4.62 (*s*, H-C(4)); 3.63, 3.59, 3.35, 3.34 (4*s*, 4 MeO); 3.49, 3.05 (dd, <sup>2</sup>J = 14, <sup>3</sup>J = 5.8, H<sub>endo</sub>-C(9), H<sub>endo</sub>-C(10)); 2.90, 2.59 (dd, <sup>2</sup>J = 14, <sup>3</sup>J = 11.7, H<sub>exo</sub>-C(9), H<sub>exo</sub>-C(10)); 2.55–2.48, 2.44–2.31 (2*m*, H-C(4a), H-C(9a)); 2.17 (dd, <sup>2</sup>J = 2.4, <sup>4</sup>J = 0.8<sup>2</sup>), H of CH<sub>2</sub>=C(3) trans to C(2)); 1.97 (d, <sup>2</sup>J = 2.5, H of CH<sub>2</sub>=C(2) trans to C(3)); 0.39 (d, <sup>2</sup>J = 2.4, H of CH<sub>2</sub>=C(3) cis to C(2)); 0.20 (d, <sup>2</sup>J = 2.5, <sup>5</sup>J = 0.5<sup>2</sup>), H of CH<sub>2</sub>=C(2) trans to C(3)); <sup>13</sup>C-NMR (90.55 MHz, CDCl<sub>3</sub>): 211.3 (*s*, 3 CO); 1400, 137.0, 134.0 (3*s*, C(5), C(8a), C(10a)); 127.7, 125.4, 125.1 (3d, <sup>1</sup>J(C, H) = 162, C(6), C(7), C(8)); 109.4, 108.5 (2*s* $, C(2), C(3)); 105.8, 102.8 (2d, <sup>1</sup>J(C, H) = 161, 2 CH(OMe)_2); 89.4 ($ *s*, C(1)); 82.8 (d, <sup>1</sup>J(C, H) = 165, C(4)); 57.8, 57.4, 53.2 (3q, <sup>1</sup>J(C, H) = 144, 4 MeO); 44.25, 44.2 (2d, <sup>1</sup>J(C, H) = 140, C(4a), C(9a)); 32.8, 30.9 (2t, <sup>1</sup>J(C, H) = 164, CH<sub>2</sub>=C(2), cis (2t, <sup>1</sup>J(C, H) = 130, C(9), C(10)). MS (70 eV): 456 (16,*M*<sup>+</sup> - 2 CO), 428 (47,*M*<sup>+</sup> - 3 CO), 413 (29), 368 (29), 338 (16), 278 (9), 141 (21), 137 (29), 75 (26), 28 (100). Anal. calc. for C<sub>25</sub>H<sub>28</sub>FeO<sub>8</sub> (512.338): C 58.61, H 5.51; found: C 58.71, H 5.62.

 $(I \text{ RS}, 2 \text{ RS}, 3 \text{ SR}, 4 \text{ RS}, 9a \text{ SR}) - [C, 2, 3, C-\eta - (1, 5-Bis(dimethoxymethyl)-1, 4-epoxy-1, 2, 3, 4, 4a, 9, 9a, 10-octa-hydro-2, 3-dimethylideneanthracene) ] tricarbonyliron (22). Yellow crystals. M.p. 157–158° (dec.). Instable compound at 20° in soln. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 7.42 (t, <sup>3</sup>J = 5.5, H-C(7)); 7.19 (d, <sup>3</sup>J = 5.5, H-C(6), H-C(8)); 5.52, 4.90, 4.78 (3s, 2 CH(OMe)_2, H-C(4)); 3.67, 3.65, 3.33, 3.28 (4s, 4 MeO); 3.54 (m), 2.98 (dd, <sup>2</sup>J = 13.3, <sup>3</sup>J = 5.5, H_{endv}-C(9), H_{endv}-C(10)); 2.65 (dd, <sup>2</sup>J = 13.3, <sup>3</sup>J = 11.8, H_{exo}-C(9) or H_{exo}-C(10)); 2.55–2.39 (m, H_{exo}-C(10) or H_{exo}-C(9), H-C(4a), H-C(9a)); 2.30 (d, <sup>2</sup>J = 3.3, 1 H); 1.98 (d, <sup>2</sup>J = 3.6, 1 H); 0.50 (d, <sup>2</sup>J = 3.6, 1 H); 0.44 (d, <sup>2</sup>J = 3.3, 1 H). MS (70 eV): 512 (0.3, M<sup>++</sup>), 484 (13, M<sup>++</sup> - CO), 456 (13, M<sup>++</sup> - 2 CO), 428 (100, M<sup>++</sup> - 3 CO), 413 (56), 368 (70), 338 (42), 171 (39), 141 (70), 137 (67), 115 (48), 87 (56), 75 (94).$ 

(1RS,2SR,3RS,4RS,4aRS,9aSR)- $[C,2,3,C-\eta-(1,8-Bis(dimethoxymethyl)-1,4-epoxy-1,2,3,4,4a,9,9a,10-octa$ hydro-2,3-dimethylideneanthracene) <math>]tricarbonyliron (23). Yellow crystals. M.p. 129–130°. IR (KBr): 3000, 2960, 2940, 2840, 2040, 1975, 1450, 1195, 1110, 1075, 1045, 945, 785. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 7.39, 7.16 (2m, H–C(5), H–C(6), H–C(7)); 5.51, 4.79 (2s, 2 CH(OMe)<sub>2</sub>); 4.60 (s, H–C(4)); 3.68, 3.60, 3.40, 3.37 (4s, 4 MeO); 3.53, 3.02 (2dd, <sup>2</sup>J = 13.5, <sup>3</sup>J = 5.5, H<sub>endo</sub>–C(9), H<sub>endo</sub>–C(10)); 2.79, 2.57 (2dd, <sup>2</sup>J13.5, <sup>3</sup>J = 11.8, H<sub>exo</sub>–C(9), H<sub>exo</sub>–C(10)); 2.51–2.37 (m, H–C(4a), H–C(9a)); 2.21 (dd, <sup>2</sup>J = 2.3, <sup>4</sup>J = 0.8<sup>2</sup>), H of CH<sub>2</sub>=C(3) trans to C(2)); 1.93 (d, <sup>2</sup>J = 2.5, H of CH<sub>2</sub>=C(2) trans to C(3)); 0.40 (d, <sup>2</sup>J = 2.3, H of CH<sub>2</sub>=C(3) cis to C(2)); 0.18 (dd, <sup>2</sup>J = 2.5, <sup>5</sup>J = 0.5<sup>2</sup>), H of CH<sub>2</sub>=C(2) cis to C(3)). <sup>13</sup>C-NMR (90.55 MHz, CDCl<sub>3</sub>): 211.3 (s, 3 CO); 139.4, 137.5, 134.8 (3s, C(8), C(8a), C(10a)); 127.2, 125.4, 124.9 (3d, <sup>1</sup>J(C, H) = 160, C(5), C(6), C(7)); 109.2, 108.2 (2s, C(2), C(3)); 105.6, 102.8 (2d, <sup>1</sup>J(C, H) = 160, 2 CH(OMe)<sub>2</sub>); 89.6 (s, C(1)); 82.8 (d, <sup>1</sup>J(C, H) = 166, C(4)); 57.9, 57.4, 53.8, 53.4 (4q,

<sup>&</sup>lt;sup>2</sup>) These long-range coupling constants with the adjacent bridgehead protons H-C(4) are typical for exo-Fe(CO)<sub>3</sub> complexes only [18].

 ${}^{1}J(C, H) = 144, 4 MeO); 44.6, 44.4 (2d, {}^{1}J(C, H) = 140, C(4a), C(9a)); 33.3, 25.0 (2t, {}^{1}J(C, H) = 130, C(9), C(10)); 33.0, 30.4 (2t, {}^{1}J(C, H) = 162, CH_2=C(2), CH_2=C(3)). MS (70 eV): 484 (9, M^+ - CO), 456 (11, M^+ - 2 CO), 428 (99, M^+ - 3 CO), 413 (54), 368 (57), 171 (12), 137 (78), 75 (100). Anal. calc. for C<sub>25</sub>H<sub>28</sub>O<sub>8</sub>Fe (512.338): C 58.61, H 5.51; found: C 58.51, H 5.62.$ 

 $(1 \text{ RS}, 2 \text{ RS}, 3 \text{ SR}, 4 \text{ RS}, 9a \text{ SR}) - [C, 2, 3, C-\eta - (1, 8-Bis(dimethoxymethyl) - 1, 4-epoxy - 1, 2, 3, 4, 4, 9, 9a, 10-oc-tahydro - 2, 3-dimethylideneanthracene) ] tricarbonyliron (24). Yellow oil. <sup>1</sup>H-NMR (360 MHz, CDCl<sub>3</sub>): 7.37 (m, 1 H); 7.23-7.14 (2m, H-C(5), H-C(6), H-C(7)); 5.46, 4.87, 4.82 (3s, 2 CH(OMe)<sub>2</sub>, H-C(4)); 3.73, 3.69, 3.35, 3.352 (4s, 4 MeO); 3.58, 3.06 (2dd, <sup>2</sup>J = 13.4, <sup>3</sup>J = 5.5, H<sub>endo</sub>-C(9), H<sub>endo</sub>-C(10)); 2.63, 2.35 (2dd, <sup>2</sup>J = 13.5, <sup>3</sup>J = 12, H<sub>exo</sub>-C(9), H<sub>exo</sub>-C(10)); 2.56-2.37 (m, H-C(4a), H-C(9a)); 2.36 (d, <sup>2</sup>J = 3.0, 1 H); 2.00 (d, <sup>2</sup>J = 3.5, 1 H); 0.52 (d, <sup>2</sup>J = 3.5, 1 H); 0.47 (d, <sup>2</sup>J = 3.0, 1 H).$ 

Oxidative Demetallation of the [Fe(CO)<sub>3</sub>(1,3-diene)] Complexes. To a soln. of **21–24** (36 mg, 0.07 mmol) in acetone (3 ml), anh.  $(NH_4)_2Ce(NO_3)_6$  (82–100 mg, 0.15–0.18 mmol) was added portionwise under stirring. After 30 min at 20°, H<sub>2</sub>O (15 ml) was added and the mixture extracted with pentane (30 ml, 4 times). The combined extracts were dried (MgSO<sub>4</sub>) and evaporated yielding 21–22 mg (92–96%) of **27** (when starting with **21** or **22**) or **28** (when using **23** or **24**).

## REFERENCES

- [1] Ph. Vioget, P. Vogel, R. Roulet, Angew. Chem. Suppl. 1982, 1128.
- [2] Ph. Vioget, M. Bonivento, R. Roulet, P. Vogel, Helv. Chim. Acta 1984, 67, 1638.
- [3] H. Brockmann, Fortschr. Chem. Org. Naturst. 1963, 21, 121; S.A. Waksman, 'The Actinomycetes', The Ronald Press, New York, 1967; J.S. Glasby, 'Encyclopaedia of Antibiotics', 2nd edn., J. Wiley & Sons, New York, 1979; F. Arcamone, Med. Res. Rev. 1984, 4, 153; G. Cassinelli, P. Orezzi, P. Gior, Microbiology 1963, 11, 167; M. Dobost, P. Gauter, M. Maral, L. Ninet, S. Pinnert, J. Preud'Homme, G. H. Werner, C. R. Séances Acad. Sci. Paris 1963, 257, 1813; M.G. Brachnikova, N.V. Kostantinova, P. Pomaskova, B.M. Zacharov, Antibiotiki 1966, 11, 763; J. R. Brown, Prog. Med. Chem. 1978, 15, 126; F. Arcamone, 'Topics in Antibiotic Chemistry', Ed. P. G. Sammes, Halsted Press, New York, 1978, Vol. 2, p. 102; W. A. Remers, 'The Chemistry of Antitumor Antibiotics', Wiley-Interscience, New York, 1979, Vol. 1, p. 63; F. Arcamone, 'Doxorubicin', Academic Press, New York, 1981; F. Arcamone, 'Anthracycline Antibiotics', Ed. H.S. El Khadem, Academic Press, New York, 1982; T.R. Kelly, Ed., 'Recent Aspects of Anthracyclinone Chemistry', 'Tetrahedron Symposia-in-Print', No. 17, 1984, Vol. 40, p. 4537–4793; K. Krohn, Angew. Chem. Int. Ed. 1986, 25, 790; R.A. Russell, R. W. Irvine, R. N. Warrener, J. Org. Chem. 1986, 51, 1595; K. Krohn, H. Rieger, Liebigs Ann. Chem. 1987, 515; J.-C. Florent, J. Ughello-Monfrin, C. Monneret, J. Org. Chem. 1987, 52, 1051; A. Genot, J.-C. Florent, C. Monneret, ibid. 1987, 52, 1057; G.A. Kraus, S.H. Woo, ibid. 1987, 52, 4841; M.E. Jung, J.A. Haganah, ibid. 1987, 52, 1889; K. Ishizumi, N. Ohashi, N. Tanno, ibid. 1987, 52, 4477; C.-y. J. Tu, D. Lednicer, ibid. 1987, 52, 5624; K. Carr, J.K. Sutherland, J. Chem. Soc., Chem. Commun. 1987, 567; R.A. Russel, A.I. Day, B.A. Pilley, P.J. Leavy, R.N. Warrener, ibid. 1987, 1631; T. Izawa, Z.q. Wang, Y. Nishimura, S. Kondo, H. Umezawa, Chem. Lett. 1987, 1655; T. Matsumoto, M. Ohsaki, F. Matsuda, S. Terashima, Tetrahedron Lett. 1987, 28, 4419; Y. Tamura, S. Akai, H. Kishimoto, M. Kirihara, M. Sasho, Y. Kita, ibid. 1987, 28, 4583; Y. Tamura, H. Annoura, H. Yamamoto, H. Kondo, Y. Kita, H. Fujioka, ibid. 1987, 28, 5709; K. H. Dötz, M. Popall, Angew. Chem. Int. Ed. 1987, 26, 1158; K. Krohn, H. Rieger, E. Broser, P. Schiess, S. Chen, T. Strubin, Liebigs Ann. Chem. 1988, 943; K. Krohn, I. Hamann, ibid. 1988, 949; Y. Naruta, Y. Nishigaichi, K. Maruayama, J. Org. Chem. 1988, 53, 1192; E.V. Vedejs, J.R. Pribish, ibid. 1988, 53, 1593; E. Ghera, Y. Ben-David, ibid. 1988, 53, 2972; D.W. Hansen, Jr., R. Pappo, R.B. Garland, ibid. 1988, 53, 4244; F.M. Hauser, P. Hewawasam, ibid. 1988, 53, 4515; R.W. Irvine, S.A. Kinloch, A.S. McCormick, R.A. Russell, R.N. Warrener, Tetrahedron 1988, 44, 4591; F. Matsuda, M. Kawasaki, M. Ohsaki, K. Yamada, S. Terashima, ibid. 1988, 44, 5745; D.W. Cameron, G.I. Feutrill, P.G. Griffiths, Tetrahedron Lett. 1988, 29, 4629; H.H. Baer, L. Siemsen, Can. J. Chem. 1988, 66, 187.
- [4] P.-A. Carrupt, P. Vogel, Tetrahedron Lett. 1979, 20, 4533; Y. Bessière, P. Vogel, Helv. Chim. Acta 1980, 63, 232; J. Tamariz, P. Vogel, Tetrahedron 1984, 40, 4549; J. Tamariz, P. Vogel, Angew. Chem. Int. Ed. 1984, 23, 74; J.-M. Tornare, P. Vogel, Helv. Chim. Acta 1985, 68, 1069; B. Demarchi, P. Vogel, A. A. Pinkerton, ibid. 1988, 71, 1249.
- [5] E. Bonfantini, J.-L. Métral, P. Vogel, Helv. Chim. Acta 1987, 70, 1791.
- [6] S. Araki, E. Bonfantini, P. Vogel, Helv. Chim. Acta 1988, 71, 1354.

- [7] B.A. Frenz, 'The Enraf-Nonius CAD 4 SDP A Real-Time System for Concurrent X-Ray Data Collection and Crystal Structure Determination', in 'Computing in Crystallography', Eds. H. Schenk, R. Olthof-Hazelkamp, H. vanKonigsveld, and G.C. Bassi, Delft University Press, Delft, Holland, 1978, pp. 64–71.
- [8] D.T. Cromer, J.T. Waber, 'International Tables for X-Ray Crystallography', The Kynoch Press, Birmingham, 1974, Vol. IV, Table 2.2B; D.T. Cromer, *ibid*. Table 2.3.1.
- [9] C.J. Johnson, ORNL-3794, Oak Ridge National Laboratory, 1971.
- [10] O.S. Mills, G. Robinson, Acta Crystallogr. 1963, 16, 758; A.A. Pinkerton, G. Chapuis, P. Vogel, U. Hänisch, P. Narbel, T. Boschi, R. Roulet, Inorg. Chim. Acta 1979, 35, 197, and ref. cit. therein.
- [11] M. R. Churchill, R. Mason, Adv. Organomet. Chem. 1967, 5, 93; R. Eiss, Inorg. Chem. 1970, 9, 1650, and ref. cit. therein; P. Diehl, A. C. Kunwar, H. Zimmermann, J. Organomet. Chem. 1977, 135, 205; F. A. Cotton, G. Wilkinson, 'Advanced Inorganic Chemistry', 3rd edn., Wiley-Interscience, New York, 1972, p. 731; see also: R. Benn, G. Schroth, J. Organomet. Chem. 1982, 228, 71; Ch. Barras, L.G. Bell, R. Roulet, P. Vogel, Helv. Chim. Acta 1981, 64, 2841.
- [12] C. Barras, R. Roulet, P. Vogel, Inorg. Chim. Acta 1984, 82, L1.
- [13] R. Gabioud, P. Vogel, Helv. Chim. Acta 1986, 69, 865.
- [14] M. Elian, R. Hoffmann, Inorg. Chem. 1975, 14, 1058; T.A. Albright, R. Hoffmann, P. Hofmann, Chem. Ber. 1978, 111, 1591.
- [15] A. A. Pinkerton, D. Schwarzenbach, J.-L. Birbaum, P.-A. Carrupt, L. Schwager, P. Vogel, *Helv. Chim. Acta* 1984, 67, 1136, and ref. cit. therein.
- [16] P.-A. Carrupt, P. Vogel, J. Mol. Struct. (Theochem.) 1985, 124, 9; see also: P.-A. Carrupt, P. Vogel, P. Mison, A. Eddaïf, N. Pellissier, R. Favre, H. Loiseleur, Nouv. J. Chim. 1986, 10, 277.
- [17] J. Wagner, E. Vieira, P. Vogel, Helv. Chim. Acta 1988, 71, 624.
- [18] A. Rubello, P. Vogel, G. Chapuis, *Helv. Chim. Acta* 1987, 70, 1638; E. Meier, A. A. Pinkerton, R. Roulet, P. Vogel, D. Schwarzenbach, J. Organomet. Chem. 1981, 220, 341.